Core¶
AnalyzerResult¶
-
class
timeside.core.analyzer.
AnalyzerResult
(data_mode='value', time_mode='framewise')[source]¶ Bases:
timeside.core.analyzer.MetadataObject
Object that contains the metadata and parameters of an analyzer process
Parameters: data_mode : str
- data_mode describes the type of data :
- ‘value’ for values
- ‘label’ for label data see LabelMetadata
time_mode : str
- time_mode describes the correspondance between data values and time
- ‘framewise’
- ‘global’
- ‘segment’
- ‘event’
Returns: A new MetadataObject with the following attributes :
- data_object :
DataObject
- id_metadata :
IdMetadata
- audio_metadata :
AudioMetadata
- frame_metadata :
FrameMetadata
- label_metadata :
LabelMetadata
- parameters :
Parameters
Object
-
data
¶
-
data_mode
¶
-
duration
¶
-
id
¶
-
name
¶
-
render
()[source]¶ Render a matplotlib figure from the analyzer result
Return the figure, use fig.show() to display if neeeded
-
time
¶
-
time_mode
¶
-
unit
¶
AnalyzerResultContainer¶
-
class
timeside.core.analyzer.
AnalyzerResultContainer
(analyzer_results=None)[source]¶ Bases:
dict
>>> import timeside >>> from timeside.core.analyzer import Analyzer >>> from timeside.core.tools.test_samples import samples >>> wav_file = samples['sweep.mp3'] >>> d = timeside.core.get_processor('file_decoder')(wav_file) >>> a = Analyzer() >>> (d|a).run() >>> a.new_result() AnalyzerResult(id_metadata=IdMetadata(id='analyzer', name='Generic analyzer', unit='', description='...', date='...', version='...', author='TimeSide', proc_uuid='...'), data_object=FrameValueObject(value=array([], dtype=float64), y_value=array([], dtype=float64), frame_metadata=FrameMetadata(samplerate=44100, blocksize=8192, stepsize=8192)), audio_metadata=AudioMetadata(uri='.../sweep.mp3', start=0.0, duration=8.0..., is_segment=False, sha1='...', channels=2, channelsManagement=''), parameters={}) >>> resContainer = timeside.core.analyzer.AnalyzerResultContainer()